Point ProcessesThis book describes the properties of stochastic probabilistic models and develops the applied mathematics of stochastic point processes. It is useful to students and research workers in probability and statistics and also to research workers wishing to apply stochastic point processes. |
Contents
Theoretical framework | 21 |
Special models | 45 |
Operations on point processes | 97 |
Multivariate point processes | 117 |
Spatial processes | 143 |
Bibliographic notes 2 41 | 169 |
References | 173 |
182 | |
Other editions - View all
Common terms and phrases
alternative applications approximation arbitrary argument arise assume asymptotic bivariate called Chapter class 2 points cluster centres cluster processes conditional intensity connection consider constant construction corresponding counter counts defined denote density dependent derived described detail determined discussion doubly stochastic equation equilibrium example finite follows further given gives identically distributed important independent and identically infinitely instant interval intervals between successive joint limit marginal mark Markov mean measure normal Note number of points obtained occur orderly origin parameter particular point process Poisson distribution Poisson process position possible probability generating function process of rate properties Prove random variables realization recorded renewal process satisfies Section sequence shown simple space spatial process specified stationary statistical studied successive points superposition Suppose theory transform translation values variance zero
Popular passages
Page 174 - Crame'r, H. (1966) . On the intersections between the trajectories of a normal stationary process and a high level. Ark. Mat.
Page 176 - Jacobs, PA and Lewis, PAW (1977). A mixed autoregressive-moving average exponential sequence and point process (EARMA(!, 1)).
Page 174 - Series expansions for the properties of a birth process of controlled variability.