Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow

Front Cover
SIAM, Dec 1, 1998 - Mathematics - 419 pages
0 Reviews
Reviews aren't verified, but Google checks for and removes fake content when it's identified
The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the problem and the interpretation of the results. In the sections on mechanical vibrations and population dynamics, the author emphasizes the nonlinear aspects of ordinary differential equations and develops the concepts of equilibrium solutions and their stability. He introduces phase plane methods for the nonlinear pendulum and for predator-prey and competing species models. Haberman develops the method of characteristics to analyze the nonlinear partial differential equations that describe traffic flow. Fan-shaped characteristics describe the traffic situation that occurs when a traffic light turns green and shock waves describe the effects of a red light or traffic accident. Although it was written over 20 years ago, this book is still relevant. It is intended as an introduction to applied mathematics, but can be used for undergraduate courses in mathematical modeling or nonlinear dynamical systems or to supplement courses in ordinary or partial differential equations.
 

What people are saying - Write a review

We haven't found any reviews in the usual places.

Contents

CL21_ch1
2
CL21_ch2
116
CL21_ch3
258

Other editions - View all

Common terms and phrases

Bibliographic information